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1. Introduction

The failure rate function h(x) = f(x)/(l-F(x)) , corresponding

to a distribution F with density f , is one of the most important

parameters in reliability theory. A problem of considerable interest,especially to inventory theorists, logistics planners, reliability en-

gineers, and seismologists, is the estimation of h from a sample of

n independent and identically distributed lifetimes X I...,X .

Several nonparametric methods for estimating h have been proposed in

the literature; many of these methods are based on the assumption that

h is a monotonic function of x . Whereas such an assumption may be

realistic in many applications, estimators of h which are not based

upon any assumptions about h , appear to be more palatable to a large

spectrum of users.

This paper is an attempt to survey the various nonparametric,

- -and non-Bayesian methods for estimating an h on which no monotonicity

conditions are imposed, and to list the important properties of these

estimates. Bayesian methods for estimating h will be surveyed in a

sequel to this paper.

I
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It is to be emphasized that the literature on the topic of this

paper is fairly extensive and scattered, ranging from reliability

studies to mortality studies and seismology. Furthermore, it is tech-

nically quite detailed, involving a host of regularity conditions, and

therefore difficult to synthesize. Consequently, a complete discussion

of each method of estimation is not undertaken here. It is hoped that

this paper will serve as a guide, and the reader, having read the sur-

vey, may then be motivated to read those individual papers which cap-

ture his or her interest.

The organization of this survey is as follows. Section 2 per-

tains to some preliminaries and introduces some notation and terminol-

ogy. Section 3 briefly discusses a graphical method of estimating h

and Section 4 summarizes estimators of h which are commonly used by

biometricians, with a special emphasis on the "life table" and the
"product limit estimates." Section 5, which occupies a large portion

of this survey, pertains to "kernel estimates" of h and methods of

improving these estimates using the "generalized jackknife." Section

6 discusses some recent results involving a "naive estimator" and its

smoothing using kernels of fixed and random band widths. In both Sec-

tions 5 and 6 some global results for the appropriate estimates are

also given. In Section 7, the "generalized failure rate function" is

introduced and methods of estimating it are outlined.

2. Preliminaries and Notation

Let X be a nonnegative random variable with absolutely continu-

ous distribution function F , and probability density function f

If X denotes the lifetime of a physical device or a biological or-

ganism, then F(x) is the probability of the event that the device has

failed by age x , and R(x) = l-F(x) , called the reliability of the

device to age x , is the probability that the device survives to age

x . The failure rate function h(x) at age x> 0 is defined as

h(x) F(x) if F(x) 1 (2.1)

h = Fx)

", ,"
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The function h(x) is also known as the "hazard function," the "mortal-

ity intensity," the "age-specific death rate," or the "force of mortali-

ty," depending upon the context in which h(x) is used.

The failure rate, as a function of time (age), has a probabilist-

ic interpretation, namely, h(x)dx represents the probability that a

device which is surviving at age x will fail in the interval

(x, x+dx) . On the basis of physical, biological, or engineering con-

siderations, one is at liberty to choose the functional form of h(x)

for a particular device or organism. Once this is done, a differential

equation in h(x) is obtained, from which f(x) and h(x) can easily

be determined. In fact, one can show [see Barlow and Proschan (1975),

or Mann, Schafer, and Singpurwalla (1974)], that

h(x) [-n(l-F(x))] , (2.2)

and

f(x) = h(x)[exp - f h(t)dt (2.3)
0

The purpose of this paper is to discuss the various nonparametric

and non-Bayesian methods that have been proposed to estimate h(x) , and

to state the properties of the proposed estimators.

Let X(I ) C X(2) ! ... : X(n ) denote the ordered values of a

random sample X1,... ,Xn  from a population with absolutely continuous

distribution function F and density f . Let F (x) be the empirical
n

sample distribution function of X1,.. .,X ; that is,

1n

F() = {number of observations among Xl ,... ,X < x}
*n nn

and

Rn(x) ! {number of observations among X1.... Xn > x}n! n n

Throughout this paper, the following abbreviations will be used.

If {a n} and {bn} are two sequences, then "a n b " is readnnn n

I"a is asymptotically equivalent to b ," and means that the ratio of an n n

-3-
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to b Ijal I (mit one. The otit ion "1 0(b )" means that the rat ion i

a to b has limit zero, and "a = O(b n)" means that the absoluten n n n

value of the ratio is bounded in the limit. The terms o(b ) and

O(bn) are frequently used to represent some unknown function of n

which has the appropriate property.

A sequence of random variables {X (w)} defined on a space Q
n

is said to converge with probability one, or converge almost surely to a

random variable X(w) , if

lim X (w) = X(W)

n

for almost all wel2 ; that is,

PI0; lim X (w) = X(w)I = I

;n-(

This type of convergence will be denoted by "Xn X , w.p.l ."

The sequence of random variables [Xn(w)} is said to converge in

probability to a random variable X(w) , denoted by "X - X" , iff forn

every c> 0

lir : IXn(w)-X(W)I > = 0
n-Ko 

n

Let X (w) be a sequence of random variables, and let {b } be
n n

any other sequence. Then the notation "X = 0 (b )" denotes the fact
n pn

that (X /b ) P 0 , so that X = 0 (1) is another way of writing
n n n p

X - 0 . The notation "X = 0p(bn)" denotes the fact that for everySn n n

c>0 , there exists a K such that

Pfe N: I<Ke} > i-c

for all n > Ng , where Na  is some integer which depends on .

-4 -
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If the sequence of random variables {Xn(W)} have corresponding

distribution functions F , and the random variable X(w) has distri-n

bution function F , then the sequence {X (w)} is said to converge in

distribution, or converge in law to the random variable X(w) , denoted

lxV
by "X + X" , if F (w) + F(w) at every point w in the set of con-n ' n

tinuity points of F

3. A Graphical Estimate

Motivated by Equation (2.2), Watson and Leadbetter (1964a) have

proposed a simple graphical estimator h of h , whereg

h (x) = the graphical derivative of {-kn(l-Fn (x))}

The curve -kn(l-Fn (x)) is plotted against x , and a smooth curve

drawn through the points by any reasonable method. The slope of this

curve at point x is an estimate of h(x)

Clearly, this method involves an unspecified amount of smoothing,
and obtaining the slope of a hand-drawn curve is notoriously difficult.

4. Estimates Used in Biometry

Some of the earliest discussions on estimating the failure rate

are in studies of the mortality rates of animals and human beings. A

survey of this early literature is given by Kimball (1960)..Conspicu-

ous among these is the paper by Grenander (1956), who obtains the maxi-

mum likelihcod estimator of h under the assumption that it is nonde-

creasing.

Suppose that the domain of x , (0,-) , is divided into k in-

tervals [0,a 1), (C1 9112 ), ... , [k.l,o) . Let the jth time interval
4

j1,... ,k be

Ij a cJ - j-i with 0 
= 0 ack =0

-5-
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Let n. be the number of Xi's which fall in I. , j=l,...,k , and let

aj_ 1 + tj l,k be the age at death of the Zth individual in the jth in-

terval, Z=1,... ,nj , with 0 < tj -,9 < I. ; here tj-l, 0 = 0 .

Kimball (1960) proposes two different sampling procedures for es-

timation:

(1) the time intervals I. are chosen arbitrarily, so that3

each n. associated with an interval is a random variable;
3

(2) the n. are preassigned, and the I.'s become random.

We shall first consider the estimation of h under sampling

scheme (1).

The actuarial estimate ha (x) of h(x) , for x C [a._ I cx) is

h (x) = h (a . 1 + an n. 1
a hak2 - a j -. (n -- '*-nj- -n

it is the number of deaths per unit time in the interval I. divided by

the average number of survivals in the interval.

A motivation for considering h is based on the fact that ha a

is related to the approximation

dx 1 x 1 2 2

____ _______AFx k2
h1x =lF(x) avg[1-F(x)] Ax - ~[2 -F(x+4) - Fx-)

where avg(') denotes the average of ()

Another estimate of h based on preassigned time intervals

has been proposed by Sacher (1956), who apparently bases his estimate

on the fact that

6
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A
h(x) = d Zn[l-F(x)] - k- n[l-F(x)]

= i-,n [1-F(x+-)] - £n[l-F(x-2)]l / I

1 - F (x -1 iZn - -

This leads to the estimate h s(x) for x c [ccj-a , where

(x) = hl 2 nn-n - -nj- l

hsI x) ct - j_ 1  . - nj ]

Whereas h is almost always positively biased, ha tends to

be negatively biased as x increases. The bias of both estimates

varies with I ; in h it increases monotonically, whereas in ha  it

sometimes increases monotonically, and at other times it starts off

being positive, and then decreases through zero through negative values.

Since h is essentially a maximum likelihood estimate, it has desir-a

able large sample properties. However, in many real life situations,

expecially those involving human experiments, the sample sizes are not

large enough to justify this argument.

Under sampling scheme (2), originally conceived by Moran (1951),

an unbiased estimate of h has been proposed by Seal (1954) when I.
J

is small enough so that

h h(j I1 +  =T )  h(aj_) 0 0< O < I.

* Seal's estimate h s(aj_ ) is
2

n. - 1
2( n.-i

0 (n- nI . - k)(tj-l k+l tj -lk)

This estimate is efficient and complete, and has variance approximately

equal to h2 (aOl) / (nj-2)

-- 7-
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Tl'hv assiimption that h (it _ + 1) h (, ) , 0< I < I < tho igh

suitably toi" soine purposes, Lil i Lo bv consiStetlL with IUoSL data in

biometry which suggest that h is usually a nondecreasing function of

h . We refer the reader to Kimball (1960) for more details on hs

and modifications to it.

4.1 The Life Table and Product Limit Estimates

It is now convenient to introduct here a close relative of the

failure rate estimate; the "life table estimate of a survival distribu-

tion," which is dominantly featured in the literature on survival stu-

dies. A key feature of survivorship and life testing data is the pres-

ence of "censored" or withdrawn observations. Breslow and Crowley

(1974), in a seminal paper on this topic, incorporate a model of random

censorship and study the "standard life table estimate" using grouped

data. The notation and terminology given below is an adaptation of that

used by Breslow and Crowley, who in turn have borrowed it from Efron

(1967).

0
Let X , n=l,...,N , be the true survival time for the nthn

individual included in the life table. These are assumed to be inde-

p-ndent random variables having a common but unknown distribution func-

tion F 0 . The period of observation or follow-up, for the nth indi-

vidual, will typically be limited by an amount Y , n=l,...,N . Undern

the model of random censorship, Y 1...,YN are also assumed to be a

random sample drawn independently of the X0  from an unknown distri-v. n
0

bution H . The X are said to be censored on the right by the Y n
n n

since one observes only

X= min(X0 , Y) and 6 =I
n n n n [xO ]

n n

where the indicator function 6 = 0 , if X is censored, and 6 = In n n

otherwise, for n=l,...,N

8
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The observed X 's constitute a random sample from the distri-
n

bution function F , where

(1-F) = (l-H)(I-F 0

The distribution function F of an uncensored observation is called a

subdistribution function. Specifically,

xQ

F(x) -P X <x , Sl1 = f (l-H(s))dF 0(s)
0

In life table analysis, interest centers around the distribution func-

0
tion F

The time period of observation [0,T] is partitioned into k

intervals I = (j-l' j]' ,with 0 : C0 < CI < ... < k = T . The condi-

tional probabilities of failure in the jth interval

q. 0 - F

are the parameters of interest, since they are approximations to the

failure rate for small values of I. If p. 1 l- q. ,then the prob-

ability of survival to Fm 9
mm

P H
m m j=

Let N. , Dj , and W. represent, respectively, the number of:1 3

. items surviving at the start of Ii t the number known to have failed in

I. , and the number censored (or withdrawn surviving) in I Further-

more, suppose that it is possible to subdivide N. and D. according
3 3

to whether an item is due for withdrawal (N2j , D2j) or not due for

withdrawal (NIj and D Ij) in I . This subdividion is possible only

f if one knows the censoring variables Y for all N items, knowledgen

which in most practical situations is hard to come by.

-9-
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The standard life table estimate (SD) used most often in practice

[Berkson and Gage (1950), Cutler and Ederer (1958), Gehan (1969)1 is

given by

D.

q N 1

j 2 J
Another estimate of q, , the reduced sample estimate(RS) studied by

Kaplan and Meier (1958) is

=D
j= NI j

It should be noted that only the RS estimate is generally con-

sistent for q. ; however, because it is based on items which are not

due for withdrawal in I. , it is not commonly used. On the other hand,
J

the SD estimate is consistent only under special conditions relating the

survival distribution F0 and the censoring distribution H . These

conditions are stated more precisely in the following theorem.

Theorem 4.1 [Breslow and Crowley (1975)]: Let the censoring

distribution H be absolutely continuous with density h on [0,T]

A necessary and sufficient condition that the SD estimate yield a con-

sistent estimate of F0 at the end points of each of the k intervals,

fur any choice of interval end points, is that F0 satisfy

F0 (x)= 1 - [1/(l+cH(x))] 2

for some constant c > 0

Quite often, a reasonable approximation to the censoring dis-

tribution is the uniform distribution; thus H(x) = x/T , O< x< T , In

which case the distributions yielding a consistent estimate satisfy

F0 (x) = I - [i/(1+cx)] . However, the distribution 1 - [i/(l+cx)]2

has a failure rate function which decreases in time, implying negative

aging, and this may be unrealistic in many situations.

S-10-
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Theorem 4.1 therefore suggests that the SD estimate is generally
inconsistent, with q converging to qj• , where qt!* # q. is specified

J 3 1

by Breslow and Crowley. The asymptotic normality of the SD estimate has

also been established by Breslow and Crowley, who also point out that

the individual q. 's are asymptotically uncorrelated.

An estimate P of P , the probability of survival to mm mm

is given by

m

m j=l

Since the estimates q. depend on the partition O< Fl < E2 < ... < Ek < T

and sample size N , it is helpful to denote the dependence of P on
m

these choices by writing

- PON(t) for t C [ m m m1,2.... ,k-im

Kaplan and Meier (1958) introduce the now extensively discussed product

Zimit estimate (PL) P0  of , where F0 = lim F and where the
N k- Fk,N '

right continuous limit is taken under any nested sequence of partitions

such that sup t m - Iml f 0 . Kaplan and Meier show that for
l<m<k

X l<X(<...i<X ,the PL estimate can be written as(1)~ <(2)= < (N) t

6 t

N (j)11. F 0- (t) = H I -I )
N ~j=l -I

- . where

I i if X(j) < t , and X(j)  is uncensored,

Strong consistency of the PL estimate is shown by Peterson (1977).

In order to obtain the asymptotic distribution of FN Breslow and

Crowley define the stochastic process {Z*(t) O< t< T} , where Z*(t) =I N 'N

(^(0 FO (t)) Then

N- 11 -
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"'heorim 4.2 i Bre; I ow and Crow I 'y (1') 74)1: I.ot 1 w IT N.

F(T) 1 , and suppose that F and H are continuous. Tlet the pro-

cess {Z*(t) ; 0< t< T} converges weakly to a mean 0 Gaus'ian process
N

{Z*(t) ; 0 < t < T} whose covariance structure for s< t is given by

0s -2

Cov(Z*(s), Z*(t))= (1-F (s))(l-F (t)) f (l-F(x)) dF(x)

0

Hall and Wellner (1980) transform the above weak convergence re-

sult to a Brownian bridge form, and then obtain uniform confidence bands
0for F

An alternate method of estimating F0 under different censoring

schemes is given by Turnbull (1976). Wegman, Nour, and Kukuk (1980)

give a time series approach to life table construction.

5. Kernel Estimates

Of the various methods used for estimating h , those based on

smoothing functions, called kernels, happen to be predominant in the

literature. Such estimators are known as "kernel estimators of the
failure rate," and it appears that their consideration is motivated by

the popularity and success of kernel estimators of the (underlying)

density function.

The choice of the kernel is very important, and to a large ex-

tent determines the properties of the estimators. Watson and Leadbetter

(1964b), in an insightful and fundamental paper on this topic, intro-

duced a sequence of functions {6 (x)} , which they called a 6-function

sequence, which satisfies the following conditions:

1 i
(a) 6 c L (i.e., f6 (x)ldx < c) for all n

(b) nS (x)dx ,for all n
~n

-12-
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(c) 6 (x) 0 , uniformly in IxI >A , for some fixed X>0

(d) fIxIA 6n(X)dx - 0 as n- - for any fixed X>0

In summary, {6 (x)} is a sequence of smoothing functions (kernels)

tending, as n- o- , to a "Dirac-6 function." Using the sequence

{6 (x)} , they consider the following two estimators of h
n

h (x) = (5.1)
1- F (x)

n

and
n 6 (x- X( Cic = (5.2)x~

n j=l n-j+l (5.2)

where
n x

fn ( x ) = (x - X(j)) and F f (u)du
3=1 0

If the sequence {6 (x)} is suitably chosen, that is, if a =n n

f6n (x)dx < - at every point of continuity x of h at which

nn

asymptotic variance given by

Var[h x xn h(x) (5.3)
n n l-F(x)(53

If in addition to the above a = 0(n) , then the asymptotic variance
n

Var[h (x)] converges to zero in the order of a /n ; that is, h is
n n n

consistent.

Under the following slightly more restrictive conditions,

(e) an = f(x)dx < , f (x)12+dx< , for some i>0 and
n n

OLn
such that n2 l+f/2 + 0 as n- ;

n *a
n

- 13 -
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0j Ii M k

(g) (n){E[F (X)] - F(x)} 0, as n-*

Watson and Leadbetter (1964b) show that the random variable

[n ]1 hx)
[l-F(x)J[ )][h(x) (5.4)

is asymptotically normally distributed with mean zero and variance 1, at

every continuity point x of h(x)

In contrast to the asymptotic results for the estimator hn

small sample properties of h have been obtained by Watson and Lead-n

better (1964b), who show that

n
E[hn(x)] f6n(x-u)h(u)du - f6n (x-u)F (u)h(u)du , (5.5)

and

Var[hn (x)1 = 62 (x-u)h(u)I n(F(u))du +

+ 2 f f 6nn(X-U)n(X-V) [l- Fn (v) _ Fn(v)-Fn(u)] dF(u)dF(v)
0<u<v l-F(v) L -F(u) F(v)-F(u)

where whereI-F (F+B) n_Fn

I (F) = F dBn B"
0

To study the large sample properties of h , a further condition

in

is required which restricts the class of distributions considered. Spe-

cifically, for a given 6-function sequence, a class C6  of distribution

- functions F is defined such that for any fixed x0 and any fixed

A> 0 , there exists a GA such that

S16(x-x)

I-F(x) < A

for all sufficiently large n , and Ix-x01 > A

~- 14 -
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Under the assumption that FCC 6 , and h is continuous at x0

with F(x0) < 1 , one can show that hn (x ) is an asymptotically un-

biased estimator of h(xo) . If, in addition, the 6-function sequence

is chosen such that c 2 fc5(x)dx < and a = O(n) , then
n n n

h(x
O)lim n Var[h (X )] = rF(x0)

The assumption a = O(n) implies in particular thatn

Var[h(x 0)] 0 ; thus h is consistent, and in fact its variance con-

verges to 0 in exactly the same way as a /n (i.e., Var[h (x)] -n n

O(a n/n)). A comparison of this result, with that given by (5.3), sug-

gests that

Var[hn(X)] Var[hn(x0 )]

In Watson and Leadbetter (1964a), some numerocal investigations

were conducted with the main conclusion that in practice, the estimators

Ih and h are essentially equivalent.

Murthy (1965) proposes two estimators Z and Z* of h by
n n

considering 6 (x) = BnK (Bnx) , where B is a nonincreasing functionn n

of n such that lim B = and lim B /n =0 , and the kernel K
n n nn-Ko n-Ko

satisfies the conditions

K(x) > 0 , K(x) = K(-x) , lim xK(x) f 0 , and fK(x)dx I

If
B n

f (X) = B fK (B(u-x))dF (u) = n K(B (X-x)
n n (n n n J=l n

and

R*(x) f f f (u)du

n nx

then

I
- 15 -
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Zn (x) = fn(x)/R (x) and Z*(X) = fn(x)/R*(x)

If x0  is a continuity point of both F and f , then the

estimators Z (xo) and Z*(x ) are consistent and asymptotically

normally distributed.

Recent literature on the topic of this survey has received

its impetus from the work of Rice and Rosenblatt (1976), who propose

thre stmatrs h 1 ) (2) (3)
three estimators, h (n h (2n and h of h . These estimatorsn 'n ' n

are similar to those of Watson and Leadbetter, and Murthy, except for

the fact that the modified sample distribution function (the usual

sample distribution function multiplied by n/(n+l)) F is considered.
n

They conslder in good detail both the bias and the covariance proper-

ties of ; 'pressions which agree with these estimators up to a term which

is negligible in order of magnitude with large probability.

Rict: and Rosenblatt let H(x) = -tn(l-F(x)) , Hn (x)

-in(1-F (x)) , and denote their 6-function sequence by {w (x)}

where W (x) = (- , with w a kernel which is bounded, band-

n

limited (i.e., w(x) = 0 , jx> A for some positive constant A),

symmetric, and of integral one, and b + 0 with nb n , as n-* wn n

An estimate of the underlying density function f is given by

f n(x) = fw n(x-u)dFn (u)

Their estimates of the failure rate function h(x) are
I 

l f (x)

h(1) - n
n I-F (x)'

n

h 2 )(x ) -dFn(u) n 1

j=l

and

- 16 -
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hn3 )(x) = fwi (x-u)dH (U) = W n(X-x(.))l n +f •
j =1

For the estimate h(1)(x) , Rice and Rosenblatt show that if
n

FE C (i.e., F is continuously differentiable), then

h(i) (x) = a(X) 1 +

n n P
where

f (x)

n 1-F(x)

2Furthermore, if FE C , then

b2
E(a h(x) + -- f U2w(u)du + O(b

2

nx)2 l-F(x) n

also, a (x) is asymptotically normally distributed.n

Thus, the leading bias term of a (x) , where a (x) agreesn n

with h(1 )(x) up to a term which is negligible in order to magnitude
n

with large probability, is proportional to f"(x)/(l-F(x))

For the estimate h)(x) , if F e C , and if x is such thatn

F(x) > 0 , then

b
2

E [ (2)h(x) = h(x) + - h"(x) u2 w(u)du + O(b )

implying that the leading bias term of h 2 )(x) is proportional to
n

h" (X)

In order to study the estimator h(3 ) (x) , Rice and Rosenblatt
n

consider the difference between h (2 ) (x) and h(3)(x) , and show that
n n

it is negligible in order of magnitude with large probability. That is,

I
- 17 -
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h (2) (x) - h(3 (x) Op(I)

Thus, like h (2) (x) the leading bias term of h(3)(x) is also pro-
n n

portional to h"(x)

Using the fact that the leading bias term of h(1 ) (x) is pro-n

portional to f"(x)/(l-F(x)) , it can be shown that the bias of h(2)(x)
n

and h(3)(x) is larger if f'(x) = 0 and f"(x) > 0 , or if f is
n

almost constant near x ; whereas the bias of h(1 )(x) is larger if
n

h'(x) = 0 and h"(x) > 0 , or if h is almost constant near x

Rice and Rosenblatt also consider the interesting case of the

observations X1,... ,Xn  being dependent. Specifically, if the observa-

tions constitute a stationary time series which satisfies some mixing

(regularity) conditions, then the estimates h (1), h 2  and hn 'n ' n

are asymptotically equivalent to a (x) = f (x)/(l-F(x))n n

The main contribution of Rice and Rosenblatt (1976) is to obtain
a global result on the estimation of the failure rate, specifically on

the maximal weighted deviation between an estimate of h , and h . They

have accomplished this by directly applying the results of Bickel and

Rosenblatt (1973) on the estimation of the density function f

[strengthened by Rosenblatt (1976) using the recent results of Komlos,

Major, and Tusnady (1975)]. Specifically, they obtain the asymptotic

~~(1)(x
distribution of the global weighted deviation of h n (x) from h(x)

. . n
on any finite interval whose length grows with the sample size n and

which diverges (tends to infinity) as n tends to infinity.

Consider a sequence {f(n)} , where £(n) denotes the length of

a finite interval, and where k(n) as n , but in such a way

-6
that log X(n) O 0(n) ,and let b = n , for O< 6< . Letn

-18-
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(i-max nbflx)l1F(x)) (h(l) (x)-h(.))jn IxI<Q'(n)

denote the maximal weighted deviation of h(1 )(x) from h(x) , weighted
n

(nn-l
by (nbf (x)) (I-F(x)) , over the interval £(n) Under some regu-

larity conditions on Z(n) , and the additional assumption that

sup (l-F(x)) -  O(n)
jx1<2(n)

one has the result that

lim P (2 log c(n))2 ( ) d < x = e

where

c(n) = 22(n)/b , X(W) = fW2(u)du

and

1 K I((W) 1
(2 lo c (og +n) og + .- log log c(n)]

(2log c(n)) 2r

if K (W) = w (A) + w (-A) > 0;
1 2X(w)

d
n

(21°gc(nl))! + (21og c(n)) log Tr 2 ]

if K (w)<0 with K(W ) = f[W (u)] 2du
1.. 2. X(W)

The above global result can be used to construct uniform confi-

dence bands for the failure rate function h(x) using the estimator

Sh ( ) (x) A 1006% uniform confidence band for h(x) , for jxj <k (n)
n

is given by

V
-19-
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with y =-log (_ logC)

Rice and Rosenblatt undertake some simulations to give some indi-

cation of the performance of the estimator h(1) and its limiting dis-

n

tribution, and claim the results to be encouraging for large sample

sizes with narrow bandwidths.

Global results for the estimators h (2 )  and h(3) and the re-
n n

sulting uniform confidence bands have been obtained by Sethuraman and

Singpurwalla (1981) via considerations of a "naive estimator" of h .

This estimator, which is shown to be uniformly asymptotically equivalent

(2)(3
to h(2  and h(3) , will be discussed later, in Section 6.n n

5.1 Improvement of Kernel Estimates--Use of
the Generalized Jackknife

Singpurwalla and Wong (1980a) attempt to reduce the bias and

improve upon the rate of convergence of the mean square error (MSE) of

kernel estimators by considering estimators of the type

h (x0) = 1 Kn n.3=1 -j+l b n

where the sequence {b I is such that b n 0 and nb n , asn n n

n ,and K is a bounded and symmetric kernel of integral one with

S- the additional properties that fIK(x)Idx < - (i.e., KEL I) , and

lim IxK(x)l = 0 . Note that h (x 0) is identical to (5.2), the esti-

mator in of Watson and Leadbetter (1964a, 1964b), and the estimator
n

h (2 ) of Rice and Rosenblatt (1976).
n

-20-
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The authors first prove a "pointwise saturation theorem," which

says that for the class of nonnegative L1 kernels K , and with the

2 1 2 2additional requirements that x KE L , lim nb (n) = h e C , and

h (3)  (the third derivative of h ) being uniformly bounded, the rate of

convergence of the MSE of hn (x0 ) is at most O(n- 4 /5 ) , regardless of

the smoothness of h . If the condition that the kernel K be nonnega-

tive is relaxed, that is, if the kernel is allowed to take some negative

values, then the bias contribution to the asymptotic MSE can, in princi-

ple, be eliminated to any desired order, and the rate of convergence of

the asymptotic MSE given by O(n- 2m/(2m+l)) for some m,>3 , can be

-l
brought as close to n as is desired. It is shown that an indefinite

use of the "generalized jackknife method" of Gray and Schucany (1972)

can be used to achieve this goal. Furthermore, by eliminating the re-

1
quirement that KESL , one is able to consider kernels for which the

rate of conveggence of the MSE of hn (x0 ) is not as slow as

O(n - 2 m/ ( 2 m+ l )  One possible non-L 1 kernel is the "sinc function
~sin x

kernel," K(x) = nx , considered by Singpurwalla and Wong (1980b).
Ttx

If the Fourier transform of h decreases exponentially, then the

asymptotic MSE of hn(X0 ) using the sinc function kernel decreases

-1
at the rate logn/n , which is very close to the ideal rate of n ,

which cannot be achieved in practice.

6. The Naive Estimator

* 'The "naive estimator*" of h was originally proposed by

Grenander (1956b), and has been considered by Marshall and Proschan

(1965) and by Barlow, Bartholomew, Bremner, and Brunk (1972, Section

*Naming the estimator naive is due to Frank Proschan.

2
- 21 -
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5.3) for estimating a monotonically increasing (or decreasing) function

h . It has been used by Singpurwalla (1975) for performing a time

series analysis of failure data.

0Following the notation of Section 4.1, let X , n=l,...,N , ben

the true survival time of the nth item, assumed to be independent iden-

tically distributed random variables having a common but unknown distri-

0bution F . Let Y , n=l,...,N , be the withdrawal time of the nthn
item, which may or may not have a joint distribution H , but which must

be independent of the x 's . As before, let
n

0
X n = min(X n Y ) nl, .. ,N

0
and interest centers arount the distribution function F

Suppose that k failures, (k<N) have been observed in all,

and let

z(0 ) <z(1 ) < ... < z

be the ordered failure times. Note that X is a failure time whenever

0
X X The total time on test at time t TN(t) , is defined asXn n"

t

T N(t) = f N(q, ,t ,
0

where N(u) is the number of items which are surviving at time u

The naive estimator of h(z) , h*(z) , is defined as

S~TN(Z(i)) - TN(Z(I)) Z Z(il)< (i) , i=l,...,k
.,h*(z) N i1

z>z(k)

Note that h*(z) is the reciprocal of the total time on test in the

interval (Z(i_1 ) , Z(i)

-22-
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0

When k = N , that is, when there is no censoring, Z( X

0 <0 0
V i , where X 0 ) < X < < X are the order statistics of

(1 (2) - (N) <X0 00 0
0 1 In this case, for Xi) < z < X ) the naive estimator

becomes

h*(z) {Total time on test in (Xi 0  (i0]} - I

N (i-i) M j

[ (n-i+i) ( i)- X ]-i

Sethuraman and Singpurwalla (1980) show that the above estimator

is asymptotically unbiased, but is not consistent, since it has a limit-

ing nondegenerate distribution. Furthermore, since for any m distinct

time points zI ... ,z the estimators {h*(zl),...,h*(z )} are asymp-
te Ni N m

totically independent, the graph of {h*(z) , z> 0} will exhibit wild
N -

fluctuations, prohibiting the use of h* as an estimator of h . This
N

behavior of h* is analogous to the behavior of the sample periodogram
N

which is used to estimate the spectrum of a stationary time series.

Thus, following the standard technique of "smoothing" the sample period-

ogram, Sethuraman and Singpurwalla smooth the naive estimator h* using
N

a bandlimited ki iel, to obtain a consistent and an asymptotically nor-

mal estimate of the failure rate.

The smoothed estimator h*(z) obtained by smoothing the naive

estimator h*(z) using a kernel of bandwidth 2bNA is, for z>bNA

given by

s \
h*(z) W ~. h(sds

where the kernel w and the sequence {b N } have the properties re-

quired by Rice and Rosenblatt (1976) (see Section 5).

- 23-
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The estimate h*(z) is consistent, and if the first derivative
N

w' of w is such that w'E 1
, then h*(z) is uniformly close to

N

h(3)(z) of Rice and Rosenblatt on bounded intervals of length K
n

where K is such that K+A < X0  Furthermore, under some regularity
(N)

conditions on F , h*(z) can be approximated by an appropriate Gaussi-
N

an process. Under the additional requirements that he C2

(W'(z)) E L , and that NbNlogbn + 0 as n- , the asymptotic dis-

tribution of the global deviation of h*(z) from h(z) can be obtained

N

on any finite interval [b NA , K] , in much the same way as in Rice and

Rosenblatt [see Theorems 2.2 and 2.4 of Sethuraman and Singpurwalla

(1981)]. These results can be used to construct the 100c% confi-

dence bands for h(z) , for b A<z<K ; these are

N

hi(z) + ) (6.1)
N \NbNF (z)), \N /N

whrey= lgN()lg)

wher y -lg(- i~lge) F N=l1F N 9 with F Nbeing the empirical

distribution function of X 0 1) < X X and for C
()=(2) =< X(N) N

(ACw) N + log (C N KlC) CN

if K 1w >0,

N (i±1)] Cn

if K (W) ! 0;

KI(u)) and K2 (w) have been defined in Section 5.

4 . -24
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(3)
Since h*(z) is uniformly close to h (z) ,and since

N n

h (3 )(z) - h (2 )(z) = 0 (1/n) , the 100C% uniforim confidence bands on
n n p

h(z) can also be obtained by replacing h*(z) in Equation (6.1) by
N

the Rice and Rosenblatt estimators h (2) (z rh (3)(z)

6.1 Random Smoothing of the Naive Estimator

It is to be emphasized that the results of Watson and Leadbetter

(1964a, 1964b), Murthy (1965), Rice and Rosenblatt (1976), and

Sethuraman and Singpurwalla (1980) apply only when there is no censor-

ing, when the sample size becomes large, and under a host of regularity

conditions on h . The above conditions are not always easy to satisfy

in practice, and so in an attempt towards eliminating them, Miller and

Singpurwalla (1980) consider a ra~ndoml~y smoothed estima~tor h Nj Of

h , defined, for some j and ij,j+l,. ..,k ,as

h* (z) N> N (-)(-),z'i
N~j

0 ~Z>Z (k)

note that when j1l , h* h* ,the naive estimator.
N ,j N

Alternate expressions for h* .in terms of h* ,for

N,3 N

ij,j+l,.. .,k ,are

h*.(z) (j1 h Z z)N , jm0 N (i-m)'

Z~i

h*(u)dT (u)
f N N

(z (il (i)(i-

J dT (u)
Z(i-j)

-25-
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Since the naive estimator h* is constant over a failure inter-
N

val, it can be viewed as some kind of smoothing over a single failure

interval. If this notion of smoothing is extended to cover j failure

intervals, then h* . results; this is a motivation for h*
N,j N~j

A reason for considering h* is that it leads to an exact

distribution-free confidence region in the case of finite samples, with

censoring. Also, its asymptotic theory does not involve the usual regu-

larity conditions. Furthermore, h* (z) is a consistent estimator of
N j

f(z) at every continuity point z of h . A disadvantage of h* . is
N,j

that it yields confidence limits on a smoothed version of h h*
S N,j

where

1Z(M

J h(u)dT N(U)
h* (z) - Z )

T Nj TN(Z(i)) TN(Z(ij)) Z(il) < z< M ,

rather than h itself. This disadvantage is of concern only if h

changes too rapidly.

Specifically, a 100C% upper confidence bound for h* (Z)

for Z(i-l ) < z< Z ) I is TNj

h, (Z) I +

where C + is the critical value such that

P sup I (ul) < c+ =lk'=i.<k J=i-i+l = - J 'k E  -I -,

and where the Ui's are independent and identically distributed random

variables with density e u

S- 26-
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The lower and the two-sided confldtnvct bouniid for h, v.fn be
1N.

similarly obtained, in terms of C and C. respectively,
,k, rectivke

where C and Ck are the infimum and the supremum of the

i
absolute value of (Um-l) , respectively.

m-i-j+l

At present there do not exist any analytical methods for comput-

ing CC and C. ; however, these can be easily ob-

j,k, jkc '"

tained via a Monte Carlo method, for any desired values of j , k , and

6 The need for such a Monte Carlo for every required combination of

j , k , and C could be viewed as another disadvantage of using h*
N,j

Miller and Singpurwalla (1980) also develop the asymptotic theory

for h*,j . as N- - with j/N- , 0< Z< 1 , and present the confi-
Nj

dence bounds for h* based on this theory. However, in the light of
TN,j

the results of Watson and Leadbetter and Sethuraman and Singpurwalla,

there are no advantages in using these bounds, and so they are not

discussed here.

7. The Generalized Failure Rate Function
and Its Estimation

Barlow and Van Zwet (1970) generalize the definition of the fail-

ure rate function by considering a known absolutely continuous distribu-

tion function G with density function g , and define the generalized

failure rate function of F , for all x> 0 such that g[G-F(x)] > 0

by

r(x) = f(x)

g G-IF(x)]

Note that when G is taken to be the exponential distribution with

parameter r=l , then r(x) h(x) , the failure rate function given by

I

-27-
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(2.1), whereas if G is taken to be the uniform distribution on [0,11

then r(x) = f(x) , the density function of F . A motivation for con-

sidering the generalized failure rate function is not within the scope

of this survey, and is given by Barlow, Bartholomew, Bremner, and Brunk

(1972). For now it suffices to know that h is a special case of r

Ahmad (1976) considers a kernel estimate of f(x)

f(x) ~f K(x2u)dF Cu) ni K(-wi)nb nj1 \ bn

where the kernel K and the sequence {b n satisfy some regularityn

conditions. He introduces the following kernel estimate of r(x),

f (x)
= -1-V

g[G (F(x))]

x
where F(x) = f f(u)du , and shows that r(x) is consistent.

-00

Shaked (1978) proposes the following estimator of r(x) • for

any fixed x :

P n(x) F F(x+ C - n (x - M- C))C gG x 1C) + M( '
n n R(x) () n

1 x 1 -Li)CRIX

where C is a positive constant, R(x) =i: x- C X(i) < x+ . Cnn 2n 2= J

and M(x) - number of X x > + C
(4 i= 2 n

To gain some insight into p (x) , note that if G is the expo-

nential distribution, then the estimator is simply the ratio of the

(normalized) number of failures in the interval [x-± C , x+ I C] to

the total time on test in the interval.

S- 28-
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When C cn - where c>0 and O<a< I and if r is

smooth in the neighborhood of x , Shaked (1978) shows that p (x) is

asymptotically normal. In particular, for 1/5< a < 1

r(x) n(a)/2(P (x)-r(x))

has an asymptotic standard normal distribution, whereas when 1/7<

a<l/5

_ _F2 *1 2 1 -1
nf____ (1-a)/2 - r(x) (f"(X) - f (x)r (x)g (G-F(x))

r (x) LPn(x) - ~)-24f(x) ff) Fx))

has an asymptotic standard normal distribution. Note that the above

expression is an extension of (5.4) applied to Pn (x)

Barlow and Van Zwet (1969, 1970) and Shaked (1978) also consider

methods of estimating r(x) when some monotonicity conditions are im-

posed on it. However, these are not given here, since they do not be-

long to the purview of this survey.
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